The neural dynamics of word recognition and integration

Listeners **recognize** and **integrate** spoken words by combining expectations about upcoming content with acoustic input.

We model this process of **recognition** and the downstream neural correlates of integration in EEG data recorded as subjects listened to naturalistic English speech [1], and ask:

• Is integration tightly yoked to the timing of word recognition, or are they independent?

RESULTS

The Variable model better predicts held-out EEG data than a baseline not incorporating recognition dynamics ([1]; *p* < 4e-6), while the **Shift** model does not (p > 0.5). We next investigate the internals of the optimal Variable model:

• Do listeners integrate words differently depending on how easy they are to recognize?

WORD RECOGNITION MODEL

Context, Input

We say a word is recognized just when its probability exceeds a threshold parameter **T**.

Word \geq T Context PWord Input \propto

How likely am I to hear this Word in this Context? Ask a language model. (GPT-Neo; Black et al. 2021)

Word

How likely is a **Word** to be realized as **Input**? **Estimate from human** confusion data. (Cutler, Weber, Smits, & Cooper 2003)

NEURAL LINKING MODELS

We design variants of the temporal receptive field model (TRF; [2]) which define how the neural response to a word's surprisal depends on the word's

TAKEAWAYS

Word integration is time-locked to word onset, not word recognition time. Integration shows amplified neural dynamics for *late-recognized* words.

goʊ

0.0

Input: dis—

disgust

dısg∧st

dismay

dısmei

disgusted

disgvstvq

1.0

0.8

... some are

recognized late

due to dense

contextual

neighborhoods

0.6

Context: "He looked at it in..."

The recognition model likelihood defines how likely any word (colors) is to be realized as noisy, incremental phonetic input (horizontal

recognition time.

We estimate these TRF parameters (together with the recognition model) to predict EEG data [1].

> 0.0 0.2 0.4 Time since word onset (s)

Jon Gauthier and Roger Levy

N400: EEG event-related potential peaking 400 ms after a word's onset, reflecting the difficulty of lexico-semantic integration; amplitude well predicted by the word's surprisal

[1] Heilbron, M., Armeni, K., Schoffelen, J. M., Hagoort, P., & De Lange, F. P. (2022). A hierarchy of linguistic predictions during natural language comprehension. Proceedings of the National Academy of Sciences. [2] Lalor, E. C., Power, A. J., Reilly, R. B., & Foxe, J. J. (2009). Resolving precise temporal processing properties of the auditory system using continuous stimuli. Journal of Neurophysiology.

Take a picture to

.

download the full paper

