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Abstract

Textless self-supervised speech models have grown in capabil-
ities in recent years, but the nature of the linguistic information
they encode has not yet been thoroughly examined. We evaluate
the extent to which these models’ learned representations align
with basic representational distinctions made by humans, focus-
ing on a set of phonetic (low-level) and phonemic (more ab-
stract) contrasts instantiated in word-initial stops. We find that
robust representations of both phonetic and phonemic distinc-
tions emerge in early layers of these models’ architectures, and
are preserved in the principal components of deeper layer rep-
resentations. Our analyses suggest two sources for this success:
some can only be explained by the optimization of the models
on speech data, while some can be attributed to these models’
high-dimensional architectures. Our findings show that speech-
trained HuBERT derives a low-noise and low-dimensional sub-
space corresponding to abstract phonological distinctions.
Index Terms: self-supervised models, decoding analysis, prob-
ing, speech, representation learning, phonemes

1. Introduction
Self-supervised learning techniques have become the new stan-
dard for speech representation learning in recent years, and are
at the foundation of models such as HuBERT [1] and wav2vec
[2], which are establishing new states of the art in automatic
speech recognition [3; 4; 5]. These systems are pre-trained en-
tirely on unlabeled data before being fine-tuned downstream for
particular tasks. As such, they are free to derive whatever repre-
sentations are optimal for their self-supervised pre-training task.

Recent work has asked whether the representations derived
by these models are human-like at multiple levels of granularity,
from their specific representational contents [6; 7] to their broad
alignment with human brain responses to speech stimuli [8; 9].
Past work [6] shows that representations of speech stimuli ex-
tracted from self-supervised models can be successfully aligned
with abstract phonetic descriptions of the input.

However, this prior work neglects a representational dis-
tinction crucial to linguistic theory: the difference between the
phonetic level of representations and the phonemic level. Un-
like phonetic representations, which are closely related to the
acoustic features that implement them, phonemic representa-
tions function in linguistic theory as the axes of contrast which
underpin lexical and grammatical distinctions and which are
core to the effective use of language. Because these two levels
are highly correlated in practice, distinguishing phonetic rep-
resentational systems from phonemic ones is nontrivial. This
paper explores whether self-supervised models encode distinct
representations of speech inputs at both levels.

Figure 1: Diagram of classification probing paradigm.

1.1. Phones, phonemes, and allophones

In the context of spoken languages, phonologists use the term
phone to describe the different phonetically-distinct categories
that are targets of speakers’ production and perception systems:
for example, the b in [əˈba͡ʊt] about and the p in [ˈpʰæt] pat
are perceptually distinctive for a speaker English, and thus are
classified as separate phones.1

However, there are many cases where multiple phones re-
alize the same linguistically meaningful class of sounds, the
phoneme. For example, the l sounds in [mɪɫk]milk and in [lin]
lean are perceptually distinguishable but not linguistically con-
trastive: there are no words that differ in their meaning based
solely on whether the l sound is “dark” [ɫ] or “clear” [l]. These
different phonetic realizations of the same phoneme are called
allophones [10; 11].

1.2. Probing for phonetic and phonemic knowledge in
speech models

Although most phonemes do not share allophones, in cases of
neutralization, a specific phone could belong to one of two
representationally-distinct phonemes. In this paper, we focus
on the neutralization of post-sibilant and word-initial plosives
in English. The top left panel of Figure 1 demonstrates the rela-
tionship between the word forms peak, speak, and beak, along
with their phonemic and phonetic representations. In isolation,
the phone [p] (voiceless, with short voice onset time) is am-
biguous as to whether it represents phonemic /p/ (as in [spik]
speak) or word-initial phonemic /b/ (as in [pik] beak) [13].

This paper tests whether self-supervised speech models de-
rive distinctly phonemic representations of their speech input, in
addition to phonetic ones, focusing on the case of neutralization.
Ultimately, we find that these speech models learn robust rep-
resentations of phonetic and phonemic content, suggesting that
these models learn human-like representations of acoustic input.

1We give phonetic transcription in [square brackets] and phonemic
transcription in /slashes/ with the International Phonetic Alphabet.
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Contrast Group 1 Group 2 Confound group

Phonemic stop (ex. labial) #pʰ V, #sp V #b V #s{k,t,l,m,n,w} V
Phonetic stop (ex. labial) #pʰ V #sp V, #b V #s{k,t,l,m,n,w} V
Consonant vs. vowel (+) C V N/A
Primary vs. no stress (+) V1 V0 N/A
Distant phoneme (before) (-) C X X X V V X X X V N/A
Distant phoneme (after) (-) V X X X C V X X X V N/A

Table 1: Description of the stimuli entering into each contrast
tested in our analyses. Columns denote targets of a classifier ap-
plied to input representations, and column contents denote IPA
phonetic patterns used to select the relevant audio frames. # de-
notes word onset; C a consonant; V a vowel optionally followed
by a stress number (1 = primary stress, 0 = no stress)[12]; X
any phoneme; {} a set of options; (+)/(-) positive/negative con-
trol tests. Representations were extracted from the onset to the
offset of the underlined phone in each matching audio file.

2. Methods
We design a probing experiment [14; 7] to test whether self-
supervised speech model representations contain distinct pho-
netic and phonemic contents. We use theMassiveAuditory Lex-
ical Decision (MALD) database [15], which contains recordings
of 26,793 words and 9,592 pseudowords, each uttered in isola-
tion by a single speaker, accompanied by time-aligned phone-
mic annotation. We convert the recordings to mono with a 16
kHz sample rate, and present them to a suite of self-supervised
speech models, each pre-trained on different datasets.

2.1. Speech models and representations

Our tests evaluate the representations of HuBERT [1], a popular
self-supervised speech representation architecture. This model
has been widely used as a component of larger spoken language
processing pipelines and has proven useful for downstream lan-
guage tasks [3; 16; 17; 18]. It has also been analyzed in other
works probing self-supervised speech models [6; 7; 9].

The HuBERT architecture2 is composed of a seven-layer
convolutional neural network (CNN) which feeds into a twelve-
layer transformer. The CNN takes in raw audio at 16 kHz and
yields a sequence of frames, each 20 milliseconds long (50 Hz).
These frames are then fed through a stack of 12 transformer lay-
ers. In our work, we extract the representations output by each
of the CNN layers and transformer blocks.3

We evaluated instances of the HuBERT architecture trained
on three different objectives. These objectives were selected to
help us distinguish the specific effects of training on speech data:
• speech HuBERT: trained to predict masked frames on
speech data from LibriSpeech [19], as released by [1]

• non-speech HuBERT: trained on non-speech audio from the
AudioSet dataset [20], as released by [21]

• random HuBERT: a matching architecture with randomly
initialized CNN and transformer weights

The non-speech and random models were included to examine
the extent to which the audio-based non-speech training objec-
tive and architecture alone facilitate the learning of phonological
representations, respectively.

We also analyzed a log-mel representation of the acoustic
input, which computes the log-power of acoustic input within
80 mel frequency bands as computed by Kaldi’s Fbank routine.
This model targets low-level features of the acoustic signal, act-
ing as a suitable baseline of comparison for the more complex
HuBERT-based speech models.

HuBERT produces a representation hℓ(t) for each 20ms
frame of the audio input at each layer ℓ. We first extract frame-
level representations hℓ(t) for each file in the MALD dataset

2We analyze the HuBERT “Base” model in this paper, which has
approximately 95 million parameters.

3HuBERT also includes a final classification layer which predicts
the identity of masked input frames. These classification weights and
the discrete output codes are not studied in this paper.

and for each HuBERT model instance. Because phones typi-
cally span more than one frame, we take a model’s representa-
tion of a phone to be its mean activation over the overlapping
frames hℓ(t) [22]. This aggregation produces a vector of size d
for each phone in the dataset, which is the object of our analyses.

2.2. Phonetic and phonemic probes

We designed a set of classification tasks exploiting the pattern of
phonetic neutralization of the stop-voicing contrast in English,
described in Section 1.2. We implemented these tasks for triples
of phones at three places of articulation: labial (/p/, /sp/, /b/),
alveolar (/t/, /st/, /d/), and velar (/k/, /sk/, /g/). Table 1 demon-
strates this scheme for the labial place of articulation, which we
use for exposition in the main text. Quantitative results are the
average of identical tasks at three places of articulation.

For each place of articulation, we design phonemic and pho-
netic multinomial regression probes pm and pt. Given a repre-
sentation of a particular phone at hidden layer hℓ, our probes
learn classifier weights

pm(hℓ) ∝ exp(WT
mhℓ); pt(hℓ) ∝ exp(WT

t hℓ) (1)

The phonemic classifier pm is tasked with distinguishing
phonemic /p/ from phonemic /b/ as realized in different contexts
(Table 1). In contrast, the phonetic classifier pt must distinguish
cases of aspirated [pʰ] from cases of unaspirated [p] and [b].

2.2.1. Controlling for phonetic confounds

These phonetic and phonemic labelings of the data are con-
founded with a simpler disjunctive phonetic coding of the input:
our phonemic labial contrast (shown in the first row of Table 1)
could be solved by grouping together inputs which contain [pʰ]
or which are directly preceded by the phone [s].4 This means
a model could solve the phonemic contrast by searching for the
presence of a word-initial [s], rather than attending to the neu-
tralized stop itself.

To control for this, we design a third class of confound in-
puts, shown in the third column of Table 1. Phones in this class
have the property that they are also directly preceded by the
sound [s] and followed by a vowel. We constrain our probe clas-
sifiers to jointly contrast among these three classes, thus ruling
out a classification strategy which merely exploits the presence
of [s] to solve the phonemic contrast.

Our classification setup thus learns three-way multi-class
weights Wm,Wt ∈ R3×d for a given d-dimensional input rep-
resentation. We optimize these weights under a multinomial
loss, requiring the classifier to jointly contrast inputs between
the two classes of interest and also with the confound class. We

4This information is likely to be present in the model representations
due to either 1) co-articulation of [s] and [p] in the input, 2) overlapping
spectral signals of [s] in the earliest input frames near the onset of [p],
or 3) models’ combination of neighboring low-level acoustic features
during their feed-forward pass.
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Figure 2: Layer-wise performance of HuBERT models on phonetic and
phonemic classifiers; log-mel classifier baselines in red.

then evaluate these classifiers on held-out data with a multi-
class ROC/AUC metric, computing an ROC score for each of
the three possible binary contrasts in the data, weighting each
score by the prevalence of the classes in the contrast, and sum-
ming these weighted scores.

2.3. Dimensionality reduction

Previous work has suggested that HuBERT encodes some in-
formation at much higher representational levels, such as word
identity and meaning [22]. In order to avoid confounding our
phonetic and phonemic tests with these higher levels, we de-
signed a set of control tests to help us target a distinctly phono-
logical level of representation within the models. Our positive
and negative control tests, shown in the lower section of Table 1,
were designed to select for a maximal and minimal level of rep-
resentational capacity. These tests offer a non-circular method
for selecting views of model representations which are neither
too strong (i.e., performing above chance on negative controls)
nor too weak (i.e., performing below ceiling on positives).

For each model representation h, we use these control tests
to search for a representation of reduced dimensionality hd

which satisfies the above criteria. Concretely, let hd
ℓ : Rn×d

denote a model’s representations of all n phones in the dataset
at layer ℓ reduced to d principal components. Let P1, P2 and
N1, N2 denote ROC/AUC measures of held-out probing per-
formance on a representation hd

ℓ for the positive and negative
controls respectively, shown in Table 1. We define a control
score S summarizing across-layer difference at dimension d:

Sd(h) =
∑

ℓ

(
P1(h

d
ℓ ) + P2(h

d
ℓ )−N1(h

d
ℓ )−N2(h

d
ℓ )
)

(2)

For each model, we selected a constrained dimensionality d∗

which maximized this contrast between positive and negative
controls:

d∗(h) = argmax
d∈{21,22,...,D}

Sd(h) (3)

3. Results
We train and evaluate phonetic and phonemic probes for repre-
sentations extracted from every HuBERT layer (7 CNN layers
and 12 transformer layers) optimized for each training objective
(speech, non-speech audio, or randomly initialized weights).
We report the probe performance as the weighted ROC/AUC
metric described in Section 2.2.1. We estimate this metric by
nested 10-fold cross validation, using an inner cross-validation
loop to estimate an L2 regularization hyperparameter.

Figure 3: Layer-wise performance of HuBERT models on control tests
on constrained dimensionality; log-mel classifier baselines in red.

3.1. Aspiration test, original dimensionality

Figure 2 shows classifier performance on the aspiration test con-
ducted on the HuBERT speech, non-speech audio, and random
models, along with a log-mel baseline. Probe performance is
evaluated with an ROC/AUC metric, where 0.5 corresponds to
random chance guessing and 1.0 corresponds to perfect phonetic
or phonemic contrasts. Since the log-mel metric is external to
the models, we show it as a horizontal red line across layers.

In all models, we see a rapid transition from near-chance
performance to high scores on both phonetic and phonemic con-
trasts within the first several CNN layers. Each model then ex-
hibits a performance drop at the final layers of the CNN (x=−1
in Figure 2), followed by near-ceiling performance in the task-
optimized transformer models and far worse performance in the
randomly initialized transformer layers. We see a slight de-
crease in probe performance in the final layers of the non-speech
audio model, suggesting task-specific specialization away from
speech features.

The random-weights model performs worse than task-
optimized models but better than chance, demonstrating that
some nontrivial portion of success on these tests can be at-
tributed simply to high-dimensional random projection. How-
ever, we see that both task-optimized HuBERT models reach
ceiling performance at intermediate layers, suggesting that train-
ing selects for quality phonetic and phonemic representations.

These results show that the speech models’ representations
are both phonetically and phonemically robust, and that these
abstract representations are acquired early in the feed-forward
pass in the CNN, even before the first transformer block. How-
ever, this at-ceiling performance may mask meaningful differ-
ences between models and contrasts of interest. Using the di-
mensionality reduction tools described in Section 2.3, we asked
if models continue to encode these abstract distinctions in their
highest-order principal components.

3.2. Control tests, constrained dimensionality

Figure 3 shows the layer-wise performance of the classifier on
the positive and negative control tests conducted on the Hu-
BERT speech, non-speech audio, and random models at a con-
strained dimensionality as described in Section 2.3. Speech and
random models: d∗=16; non-speech audio model: d∗=8, log-
mel: d∗=80 (no reduction).

Although our probe performed at ceiling in the aspiration
test, the soundness of our probing paradigm is affirmed by
the patterning of performance on our control tests: all Hu-
BERT models perform poorly at the negative controls and well
at the positive controls, confirming that there do exist non-
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Figure 4: Layer-wise performance of HuBERT models on phonetic and
phonemic classifiers with constrained d∗; log-mel baselines in red.

phonological distinctions that the models do not encode.
For all models, a marked jump in performance occurs in

the last layer of the CNN. The layer at which this jump occurs
coincides with the layer at which model performance temporar-
ily drops in the aspiration test. This suggests that the sudden
improvement in representing gross phonological categories (the
positive controls) trades off with success at fine-grained phono-
logical distinctions (the aspiration test), though this performance
picks back up later in the transformer layers (Figure 4).

3.3. Aspiration test, constrained dimensionality

Figure 4 shows classifier performance on the aspiration test con-
ducted at the constrained dimensionalities d∗. Here, the models
no longer perform at ceiling on the classification task. The per-
formance of log-mel remains the same as in Figure 2 since its
constrained d∗ value is unreduced, remaining at d∗=80. Un-
like the HuBERT models, log-mel is unable to perform well
at the positive controls (visible in Section 3.2), meaning that
there is no downward pressure when finding a constrained d∗

that maximizes the difference between positive and negative
controls. The HuBERT speech model out-performs both other
models, and in both late CNN layers and early transformer lay-
ers achieves better performance on phonemic classification than
phonetic. In later layers, however, the performance of phonetic
distinctions gradually improves relative to the phonemic ones.
This suggests that, while the self-supervised training objective
leads to the HuBERT speech model discovering both salient
phonetic and phonemic abstractions, the phonetic representation
may be prioritized in later layers due to its greater utility in pre-
dicting the identity of short (20ms) masked frames in training.

4. Discussion
We found in both aspiration and control tests that HuBERT suc-
cessfully draws abstract representational distinctions between
input phonemes within its CNN layers, prior to even the first
transformer block. This suggests that the more complex trans-
former architecture may actually be overpowered for these types
of speech representation tasks. This is compatible with some
work on distillations of HuBERT, which find that a majority
of HuBERT’s transformer layers can be excised without signif-
icant performance loss, so long as the CNN layers are main-
tained [23]. Future work can investigate the degree to which
these phonetic and phonemic distinctions are maintained in dis-
tilled models, and whether models with fewer parameters could
recover the same representational contents from scratch.

We find both phonetic and phonemic distinctions are en-
coded early in the HuBERT speech model, as well as to a lesser
degree in the non-speech audio model. Our results demonstrate

that HuBERT’s forward pass first recapitulates, then exceeds,
the representational capacity of the log-mel baseline. First, the
penultimate CNN layer of HuBERT trained on speech data pro-
duces representations which encode the same phonological dis-
tinctions as log-mel features (Figure 4, x=−2). Next, the final
CNN layer of HuBERT renders higher-level phonological dis-
tinctions not present in the log-mel features (Figure 3, x=−1).

Some of this success seems to be due merely to HuBERT’s
high-dimensional transformer architecture. We note that even
the random-weights model encodes coarse-grained phonologi-
cal distinctions late in its CNN layers (Figure 3, x=−1, green).
However, the fine-grained distinctions targeted in the aspiration
test are not encoded at the same layers (Figure 2, x=−2 and−1,
green). This disparity persists through the transformer layers,
where we see a sustained gap in decoding performance between
the two models (Figures 2 and 3, blue vs. green).

The contrasts with the above baseline models suggest that
task-optimized HuBERT simultaneously and with lower noise
accomplishes two representational functions modeled indepen-
dently by the log-mel and random projection baselines: it de-
rives the fine-grained phonemic distinctions readable from log-
mel representations, while rendering decodable the gross phono-
logical distinctions present in the randomly initialized models,
all without losing lower-level phonetic information.

Although we sought to control for frame overlap confounds
and select only information relevant to the phonological identi-
fication task, confounds may remain. In the aspiration test, the
non-speech and random models unexpectedly performed better
at phonemic classification than the phonetic one. We expected
the opposite result, given [13]’s finding that the phonetic /sp/-/b/
similarity can indeed be recovered from low-level acoustic fea-
tures. Further, the constrained speech model unexpectedly gains
higher relative performance on the phonetic than the phonemic
task over the course of its transformer layers (Figure 4, blue).

A possible explanation for this discrepancy is that the
MALD dataset’s speaker exhibits idiolectic differences in voice
onset time that undermine the assumed acoustic similarity of /sp/
and word-initial /b/, which lie outside the generalization popu-
lation of [13]’s claim. This would lead to degradation on the
phonetic classification task relative to the phonemic one, since
the “unaspirated” category would then be internally heteroge-
neous. Extending the same analysis to a multi-speaker dataset
or creating new phonological tests may resolve this issue.

5. Conclusion
This paper tested whether self-supervised speech models derive
distinctly phonemic representations of their speech input, using
aspiration as a case study. We find that these speech models
derive robust representations of phonemic and phonetic content
which recover and surpass fine-grained log-mel features. These
representations emerge early in the models’ processing stream,
a phenomenon which has implications for the design of self-
supervised speech models. Differences in model performance
depending on the content of training datasets are evidence for
task specialization arising in later model layers. Overall, the
lack of marked distinction between phonetic and phonemic con-
trasts suggests the presence of certain confounds that complicate
representational probing of these speech models.
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