
Under review as a workshop contribution at ICLR 2015

EXPLOITING LONG-DISTANCE CONTEXT IN
TRANSITION-BASED DEPENDENCY PARSING WITH
RECURRENT NEURAL NETWORKS

Jon Gauthier, Danqi Chen & Christopher D. Manning
Department of Computer Science
Stanford University
Stanford, CA 94305, USA
{jgauthie,danqi,manning}@cs.stanford.edu

ABSTRACT

We augment a state-of-the-art dependency parser with sentence-level knowledge
using a recurrent neural network language model. These encodings of sentence-
level knowledge produced by the RNNLM help to correct a key shortcoming of
the transition-based parser, which otherwise cannot make use of long-distance in-
formation in making parsing decisions. We demonstrate quantitative performance
increases over a competitive baseline model on the Penn Treebank, and give a
qualitative analysis of the effect of the fixed-length encodings on parser output.

1 INTRODUCTION

Traditionally, natural language parsing was dominated by dynamic programming methods using a
parse chart, so that various hypotheses could be evaluated and combine with some amount of global
information about the whole sentences being used to aid the search for a good parse. However, a
combination of the desire for high-speed parsing for web-scale application and the development of
machine learning approaches which are very good at predicting parse decisions has led to the decline
of these methods, and a growing dominance of greedy transition-based parsers, mainly dependency
parsers, which decide parser moves using a classifier which examines a local context.

These parsers (also called shift-reduce parsers; MaltParser, (Nivre et al., 2006) is a canonical exam-
ple) are fast, have a high accuracy, and are hence very widely used. Nevertheless, they have two key
defects. One is that they were traditionally based on the use of classifiers which used millions of
sparse categorical features (both elementary features, and many interaction term features which are
crucial to good parsing performance). While this approach has basically been workable, it suffers
from the usual problems of sparseness, statistical inefficiency, and slow feature computation. These
problems were considerably addressed in Chen & Manning (2014), who show how a neural network
dependency parser over distributed representations can give higher quality parses more quickly than
standard feature-based greedy dependency parsers.

However, this work did not address a second important problem, which is that the classifier-based
parsers are greedily making decisions based only on a very local context. While such an approach is
very effective in terms of speed, it is well-known that it leads to these methods being less accurate
in incorporating long-distance context and in making more global decisions about long distance
dependencies (McDonald & Nivre, 2007). In this paper, we address this problem by using a recurrent
neural network (RNN) to provide a global view of upcoming sentence context to help guide the
decisions of the dependency parser. At any point in the parse, the remainder of the sentence can
be summarized by the state of a long short-term memory (LSTM) neural unit, where the recurrent
model is run backwards from the end of the sentence, so that each state summarizes the remainder of
the sentence at that point. This hidden state is then incorporated into a feed-forward neural network
that determines a sequence of parse decisions inside a shift-reduce parsing architecture.

In this paper, we introduce transition-based dependency parsing and previous work on using neural
network approaches (Section 2), analyze performance problems in such parsers (Section 3), develop
a novel parsing model that incorporates an RNN to model future context (Section 3) and then provide

1

Under review as a workshop contribution at ICLR 2015

experiments showing the effectiveness of this model (Section 5), and finally do some analysis of the
results (Section 5). Our major contributions are emphasizing the need to model global context
in making local decisions, introducing a new parsing model exploiting RNNs that does this, and
showing modestly improved parsing numbers as a result.

2 PREVIOUS WORK: TRANSITION-BASED DEPENDENCY PARSING

A transition-based dependency parser (Yamada & Matsumoto, 2003; Zhang & Clark, 2009) predicts
a full dependency parse tree by proceeding left to right over the words of an input sentence, making
greedy parsing decisions at each word. Such parsers are very efficient, but often sacrifice some
amount of accuracy in making greedy local decisions.

Our parser is based on the transition-based arc-standard system (Nivre & Scholz, 2004). The parser
is formally defined as a three-tuple (S,B,A), where S is a stack of partial parses, B is a buffer of
words yet to be parsed, and A is a set of arc labels produced so far by the parser. The parser’s initial
configuration for a sequence of words w1, . . . , wn is S = [], B = [w1, . . . , wn], A = ∅. For any
configuration three transition types are available:1

1. SHIFT: Pop the first element from the buffer and push it onto the stack. (Buffer must be
nonempty.)

2. LEFTARC(l): Create an arc with label l from the first item on the stack to the second.
Removes the second item from the stack. (Stack must have at least two items.)

3. RIGHTARC(l): Create an arc with label l from the second item on the stack to the first.
Removes the first item from the stack. (Stack must have at least two items.)

The LEFTARC and RIGHTARC transitions are both parameterized by a dependency label l. Our
system will thus have 2L + 1 possible transitions, where L is the number of different relations in
the dependency grammar being learned. For more details on the arc-standard system, see Nivre &
Scholz (2004).

2.1 PREVIOUS WORK: NEURAL NETWORK DEPENDENCY PARSING

In this paper, we extend the neural-network model of Chen & Manning (2014), which achieved state-
of-the-art accuracy among greedy dependency parsers. The key change in this parser compared to
prior work was the use of dense feature representations rather than categorical inputs or conjunctions
of such inputs. This change in feature representation helped to relieve issues in data sparsity and
runtime.

This transition-based parser makes local parsing decisions based on dense feature representations
of the parser configuration. For a given parser configuration, the Chen & Manning (2014) model
extracts dense feature representations for 18 elements in total: (1) The top 3 words on the stack and
buffer, (2) the first and second leftmost / rightmost children of the top two words on the stack, and
(3) the leftmost of leftmost / rightmost of rightmost children of the top two words on the stack.

The model of Chen & Manning (2014) extracts separate representations for the words, parts of
speech, and corresponding arc labels of these elements. It then feeds forward these embedding
features through a fully connected neural network with a single hidden layer, using the network
output to predict parser transitions.

A key remaining issue not addressed by Chen & Manning (2014) is that the parser can only make
use of knowledge from its local parsing context — namely, three words to the left on the stack
(including dependents) and three words to the right on the buffer. This leaves the parser unable to
reason about long-distance grammatical constructions when such constructions do not fall within the
narrow range established by the given local features. We expand this claim in the following section
with examples and preliminary linguistic analysis.

1Note that each transition has preconditions on the parser state, and so not all three are always legal deci-
sions.

2

Under review as a workshop contribution at ICLR 2015

Figure 1: Erroneous parse produced by the Chen & Manning (2014) parser. The parser incorrectly
detects a list phrase (this is an appositive) and makes an invalid conj arc, making a correct parse
of the appositive’s structure impossible. The word at the head of the stack at the time of the error is
bolded, the erroneous arc is drawn in bold red, and later arcs which the erroneous arc prevents from
being drawn are shown in dashed gray.

the view from the trading floor of an American securities firm , Jefferies & Co. , also was troubling .

det

det

nn

det

amod

nn punct

conj

cc

conj

2.2 ANALYSIS

We analyze the first errors committed by the Chen & Manning (2014) parser for each sentence
in the development corpus. A common trend we notice in these parser errors is that the parser
fails to notice information later in the sentence that informs the grammatical role of the word
currently being parsed. Figure 1 gives an example error, where the parser decides to draw an arc
(and an incorrect one at that) too early. Without any view of sentence-level information, it fails to
notice that the word being parsed (Jefferies) is part of an appositive phrase, not a list.

This analysis suggests that the parser might perform better with a representation of long-distance
features of the sentence.

Confusion over long-distance modifier attachments, especially in the cases of clausal complements
and prepositional phrases, may also be resolved by such an extension. It is unclear from a first-error
analysis, however, when these mistakes are made due to lack of sentence-level knowledge and when
they are made due to a genuine confusion over the attachment of modifiers already visible to the
parser. We will return to these questionable error cases in Section 5 in analyzing parser results.

3 MODEL: BUFFER-AWARE PARSING

Motivated by our analysis in Section 2.2, we propose an extension to the model of Chen & Manning
(2014) which allows the classifier built into the parser to incorporate sentence-level knowledge.

Recent work in neural machine translation shows that sentence meaning can be effectively encoded
in a fixed-length vector in order to produce translations with near state-of-the-art accuracy (Cho
et al., 2014; Sutskever et al., 2014). Inspired by this work, we attempt to incorporate long-distance
buffer features through a similar encoding process. We encode the buffer of a given parser config-
uration using a recurrent neural network language model (RNNLM) trained on backwards English
text, and append the fixed-length vector encoding to the classifier’s hidden layer. These buffer en-
codings are then integrated into an existing neural-network dependency parser. The next sections
explain this additional language-modeling feature and its parser integration in more detail.

3.1 RECURRENT NEURAL NETWORK LANGUAGE MODEL

We use a recurrent neural network language model (Mikolov et al., 2010) with an implementation
of Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997; Graves, 2013). With the
LSTM unit in place, a recurrent neural network language model can learn to adaptively remem-
ber and forget words it has observed. It can, for example, favor remembering content words over
content-less particles. More relevantly for our purposes, it can learn to retain information about
grammatical structure in a parser’s buffer that may be of use for current parsing decisions.

To predict the next word in a sentence given a current word embeddingwi and previous LSTM value
cell `i−1 = 〈hi−1, ci−1〉, we compute

`i = 〈hi, ci〉 = H(`i−1, wi) (1)
pi = softmax(Wsofthi) (2)

3

Under review as a workshop contribution at ICLR 2015

where H is an LSTM activation as described in Graves (2013), Wsoft is a learned weight matrix.
pi is an estimate of a probability distribution describing the next possible word in the sentence:
P (wi+1 | wi, wi−1, . . . , w1) ≈ pi(wi+1) (where pi(·) represents vector indexing).

3.2 INCORPORATING RNNLM FEATURES

We use a recurrent neural network language model (Mikolov et al., 2010) described in Section 3.1
to encode the buffer of the transition-based parser, which will be some subsequence beginning at the
start or in the middle of the sentence being parsed and ending after the final word in the sentence.
We perform the actual language modeling in reverse order, from right to left across the buffer. In
this way we can encourage the resulting RNN hidden layer value to be more informative for this
purpose by completing (rather than starting) the language-modeling process at the word in question.
This motivation is similar to that of Sutskever et al. (2014), who also reverse input data in order to
promote better memory of short-distance relationships.

This feedforward process is as defined in the language modeling LSTM in Equation (1), except that
our time-steps proceed right-to-left through a sentence rather than in the more intuitive direction.
Mathematically, for a given parser buffer with words wi, wi+1, . . . , wN , where i ≥ 1 and N is the
number of words in the sentence, we define the buffer encoding Bi by the recurrence relation

`N+1 = 〈~0,~0〉
`i = 〈Bi, ci〉 = H(`i+1, wi). (3)

This buffer encoding Bi will be useful in the next section, where it is used to augment the existing
representation of parser state.

3.3 AN EXTENDED CLASSIFIER FOR DEPENDENCY PARSING

We insert this RNNLM feature representation into the framework of Chen & Manning (2014). We
augment the classifier central to making parsing decisions, which accepts a current transition-based
parser state and suggests the next transition which the parser should take. Suppose for purposes of
explanation that we wish to use the classifier to determine a transition while word wi−1 is the top
word on the stack (i.e., the buffer contains words wi, wi+1, . . . , wN), and all words before wi−1

have either been completely parsed or still remain on the stack below wi−1.

We represent each word in the sentence as a d-dimensional dense vector ewj ∈ Rd.2 Part-of-speech
tags and labels (used to build state representations from the feature templates described in Section 2)
are also represented with dense vectors etj , e

l
k ∈ Rd, where etj is a representation of the part of speech

of the jth word and elk is a representation of the kth label in the grammar being constructed. These
embeddings are retrieved from matrices Ew, Et, El, respectively.

We first construct the input layer. All word embedding features are concatenated into a vector
xw ∈ Rdnw , where nw is the number of word-based features used. We similarly construct part-of-
speech and label concatenations xt ∈ Rdnt , xl ∈ Rdnl .

The parser-focused hidden layer (of dimension dh) is a nonlinear transform of these inputs:

Pi =
(
Ww

1 x
w +W t

1x
t +W l

1x
l + b1

)3
(4)

where Ww
1 ∈ Rdh×(dnw),W t

1 ∈ Rdh×(dnt),W l
1 ∈ Rdh×(dnl) are learned weight matrices, and

b1 ∈ Rdh is a learned bias term. We use the same cube activation function as in Chen & Manning
(2014).

We use a learned RNNLM to construct a fixed-length representation Bi of the buffer from the end
of the sentence back to and including wi, given in the buffer-modeling LSTM in Equation (3).
This hidden layer component, the buffer-focused hidden layer, is concatenated to the parser-focused
hidden layer Pi in a final softmax activation to produce the output layer ptrans :

ptrans = softmax
(
W2

[
Pi

Bi

])
. (5)

2In our present code, we train these embeddings separately from the embeddings used within the RNNLM.

4

Under review as a workshop contribution at ICLR 2015

The given weight matrix W2 can be thought of as the block matrix [W2P W2B], where W2P is
an l × dh matrix mapping the parser-focused hidden layer to the output layer, and W2B is a l × dL
matrix mapping the buffer-focused hidden layer to the output layer.

As in Chen & Manning (2014), ptrans is a probability distribution over parser transitions. The
highest-probability legal transition will be selected by the parser and used to update the parser state.

3.4 TRAINING

For each sentence we augment the training examples of the Chen & Manning (2014) parser with
RNNLM buffer encodings. We generate training examples {(ci, Ti, B(ci))}mi=1, where ci represents
a parser configuration, Ti represents the correct transition for this configuration to reach the correct
parse for the corresponding sentence, andB(ci) represents an RNNLM encoding of the buffer within
ci. In training we aim to minimize cross-entropy loss, with an l2 regularization term:

L(θ) = −
∑
i

log pTi +
λ

2
||θ||2 (6)

where θ is the set of all parameters {Ww
1 ,W

t
1 ,W

l
1, b1,W2P ,W2B , E

w, Et, El}. Softmax probabil-
ities and backpropagation are performed only for legal transitions on a given configuration during
training.

We backpropagate errors in parser transitions to W2P and W2B , the weight matrices mapping from
the parser- and buffer-focused hidden layers to the output layer. The errors in W2P are further back-
propagated to the bias b1, weight matrices Ww

1 ,W
t
1 ,W

l
1, and embedding matrices Ew, Et, El. Er-

rors are not backpropagated through the RNNLM. We our training focus to outside the RNNLM
for the experiments in this paper; future work will explore the potential benefit of jointly training the
language model along with the parser.

We train with mini-batched adaptive gradient descent (Duchi et al., 2011). We also perform hidden
layer dropout (Hinton et al., 2012).

4 EXPERIMENTS

We train this parser model on the WSJ section of the Penn Treebank, using the standard splits:
sections 2–21 are used for training, section 22 for development, and section 23 for testing. Using the
Stanford Parser we convert the PTB to Stanford Dependencies representations, v3.3.0 (de Marneffe
et al., 2006). Gold part-of-speech tags in the corpus are replaced with tags predicted by the Stanford
Tagger, using the bidirectional5words model (Toutanova et al., 2003).

The hyperparameters of the Chen & Manning (2014) parser are retained in these experiments. We
train the neural network with word, part-of-speech, and label embeddings of size d = 50 and regu-
larization parameter λ = 10−8. We use an initial AdaGrad learning rate of α = 0.01, and dropout
probability of 0.5.

We incorporate an RNNLM model as described in Sections 3.2 and 3.3.3 We train with a hidden
layer size dL = 200, and an output vocabulary of 20,000 words.4 All LSTM weights (along with
word embeddings and softmax weights for the output layer) are randomly sampled from a uniform
distribution over [−0.1, 0.1]. The RNN trains on a batch of 128 sentences at a time.

We use the weights of a competitive transition-based model (labeled as “Baseline” in Table 1) trained
with the Chen & Manning (2014) parser as initializations for the extended parser weights. The por-
tion of the second weight matrixW2 which maps from the buffer-focused hidden layer section to the
output layer (named W2B in our earlier discussion) is randomly initialized in the range [−0.1, 0.1].
We train with mini-batched AdaGrad (Duchi et al., 2011) for 20,000 iterations (with a batch size
of 104) and retain the model which yields the highest unlabeled attachment score (UAS; percent of
tokens with correct head token) on a held-out development set.

3Thanks to Thang Luong (Stanford CS) for providing us with MATLAB code to train an RNNLM.
4We focus on predicting the 20,000 most common words in the corpus; all other words are mapped to an

<unk> token.

5

Under review as a workshop contribution at ICLR 2015

Model Dev Test
UAS LAS UAS LAS

Baseline (Chen & Manning, 2014) 91.66 89.27 91.21 89.06
Control 91.70 89.21 91.29 89.13
With RNNLM 91.80 89.36 91.39 89.23

Table 1: Model performance on PTB development and test sets (Stanford Dependencies labeling
scheme)

If it falls . . . the exchange halts trading for one hour; if the decline hits 400, the exchange closes . . .

parataxis
dobj

(a) Parataxis arc (bold blue) which the RNNLM-augmented parser gets correct. To draw this arc correctly, it is
necessary to arc onto the prepositional phrase for one hour (dotted green arc) before the parataxis is actually
observed.

operates under the trade name ACCO and supplies the medical and dental markets

conj nn

(b) conj arc (bold blue) which the RNNLM-augmented parser gets correct. In order to draw this arc correctly,
it is necessary to recognize that ACCO is part of a noun compound (and not within the scope of a new conjunct
phrase).

Figure 2: Parses drawn from our development split of the Penn Treebank WSJ data which are
corrected by the RNNLM-augmented parser, while incorrectly parsed by the control parser

4.1 RESULTS

Unlabeled and labeled attachment scores calculated on section 23 of the WSJ portion of the Penn
Treebank are shown in Table 1. As is standard, punctuation arcs are excluded from evaluation.
The model labeled “Baseline” is the best model trained using the released Chen & Manning (2014)
parser (no extensions or retraining).5

Since we used the weights of this model to initialize our own RNNLM-augmented parser, it would
be fair to train a separate “Control” model as well with the same weight initializations for the same
number of iterations as we train our own parser. The line in Table 1 labeled “Control” is the model
resulting from retraining using the baseline model’s weights for 20,000 iterations (the same number
of iterations for which the RNNLM-augmented parser is trained) on the same training data used by
the RNNLM parser.

The RNNLM-augmented parser shows an improvement of about 0.1% in UAS and LAS over the
control model (∼ 0.2% UAS and LAS over the baseline). While this is only a modest quantitative
improvement, we discuss in the next section qualitative performance improvements that indicate that
the RNNLM is doing something positive for the parser.

5 DISCUSSION

We find that the RNNLM-augmented parser learns to correct the error discussed earlier in Figure 1.
The next paragraphs discuss a different type of error resolved by the parser: cases where arcs were
not being drawn soon enough (rather than being drawn too early).

Figure 2a shows an example sentence where the RNNLM-augmented parser is able to successfully
recognize a long-term parataxis relation. It is actually necessary to recognize that this parataxis
relation exists far earlier during parsing: we must draw the green dobj arc sooner rather than later

5The released Java parser code has been acknowledged to produce inferior numbers, below those attained
in the paper by an original MATLAB implementation. The baseline numbers shown here are the best of some
20 runs of the training code.

6

Under review as a workshop contribution at ICLR 2015

Effect on modifier attachment Count

Fixed attachment 17
Broke attachment 21
Rearranged attachment 11

Table 2: Survey of modifier attachment changes with the RNNLM augmented parser (versus the
output of the control parser)

Figure 3: Parser performance on development and test sets when restricting evaluation to sentences
of a particular minimum length (horizontal axes). The orange bars show the difference between the
RNNLM-augmented parser UAS (red line) and control parser UAS (blue line).

(a) Development set analysis

0

0.2

0.4

0.6

0.8

1

U
A

S
di

ff
er

en
ce

0 10 20 30 40 50

86

88

90

92

Minimum sentence length

U
A

S

RNNLM
Control

(b) Test set analysis

0

0.1

0.2

0.3

U
A

S
di

ff
er

en
ce

0 10 20 30 40 50

89

89.5

90

90.5

91

91.5

Minimum sentence length

U
A

S

RNNLM
Control

in order to be able to eventually draw the right arc from halt onto close. Using the added RNNLM
features, the parser was able to recognize this and make the proper arc. Though we did not expect it
from our initial first-error analysis, we find that parataxis (either as a quasi-coordination relation as
in Figure 2a or as a relation indicating reported speech) is one of the key parse issues resolved by
the RNNLM-augmented parser.

Figure 2b shows a sentence with scope ambiguity. Our control parser misunderstands the scope
to read operates under the trade name [[ACCO] and [supplies the medical and dental markets]].
The RNNLM-augmented parser correctly recognizes at the point of parsing the word ACCO that
the following phrase coordinates not with a noun phrase but with an entire verb phrase: that is, the
proper bracketing is [operates under the trade name ACCO] and [supplies the medical and dental
markets]. It makes the necessary left nn arc (shown in green in the figure) in order to be able to
form the correct coordination construction later on.

In Section 2.2 we posed the question of whether an RNNLM-augmented parser might be able to
resolve more general modifier attachment problems. To try to answer this question, we took a high-
level survey of 100 parses from the development set for which the RNNLM-augmented parser output
and control parser output differed. Table 2 shows the number of modifier attachment ambiguities
which were resolved in the RNNLM-augmented parse. We also count the number of modifier at-
tachment issues introduced by the RNNLM parser, and attachment problems which were modified
but not fixed by the RNNLM parser. There is no clear evidence from this survey that the RNNLM
can help or hurt resolve modifier attachment ambiguity in general.

We do see a clearer trend, however, in RNNLM parser performance on different length sentences.
During evaluation we hypothesized that the effect of the RNNLM augmentation would be more ev-
ident on longer sentences, where sentence-level knowledge is of increasing importance (where the
chances of missing modifiers later in the sentence increase with sentence size). Figure 3 shows an
analysis of the performance of the control and RNNLM-augmented parsers on subsets of the evalu-
ation data (filtering by minimum sentence length). The effect is extremely clear on the development
set: RNNLM-augmented parser performance (relative to the control performance) spikes at greater
sentence lengths. Results are less clear on the test set, but we still see a trend of greater relative
performance at greater lengths.

7

Under review as a workshop contribution at ICLR 2015

6 CONCLUSION

In this paper we evaluated the effects of introducing sentence-level knowledge in the form of
RNNLM-constructed parser buffer encodings into parsing decisions. We demonstrated both (mi-
nor) quantitative gains and qualitative improvements in parser output.

There are two obvious avenues of future work for this project:

1. Develop the ability to jointly train the parser and the language model, backpropagating
errors in parser predictions through time to the RNNLM weights. In this way the RNNLM
can be trained to adaptively remember only the information in a parser buffer which is most
useful for the purposes of parsing (rather than for the purposes of predicting the following
words in the buffer sequence).

2. Investigate alternatives to the complex RNNLM solution (e.g., sparse features) which
might yield the same qualitative effects as described in the analysis of RNNLM parser
output.

ACKNOWLEDGMENTS

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
those to funding agencies, go at the end of the paper.

REFERENCES

Chen, Danqi and Manning, Christopher D. A fast and accurate dependency parser using neural
networks. In Empirical Methods in Natural Language Processing (EMNLP), 2014.

Cho, Kyunghyun, Merrienboer, Bart van, Gulcehre, Caglar, Bougares, Fethi, Schwenk, Holger,
and Bengio, Yoshua. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association for
Computational Linguistics.

de Marneffe, Marie-Catherine, MacCartney, Bill, Manning, Christopher D., and others. Gener-
ating typed dependency parses from phrase structure parses. In Proceedings of LREC, vol-
ume 6, pp. 449–454, 2006. URL http://t3-1.yum2.net/index/nlp.stanford.
edu/manning/papers/LREC_2.pdf.

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.
URL http://dl.acm.org/citation.cfm?id=2021068.

Graves, Alex. Generating sequences with recurrent neural networks. arXiv:1308.0850 [cs], August
2013. URL http://arxiv.org/abs/1308.0850. arXiv: 1308.0850.

Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Rus-
lan R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012. URL http://arxiv.org/abs/1207.0580.

Hochreiter, Sepp and Schmidhuber, Jrgen. Long short-term memory. Neural Computation, 9(8):
1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http:
//dx.doi.org/10.1162/neco.1997.9.8.1735.

McDonald, Ryan and Nivre, Joakim. Characterizing the errors of data-driven dependency parsing
models. In Empirical Methods in Natural Language Processing and Natural Language Learning
(EMNLP-CoNLL), 2007.

Mikolov, Tomas, Karafit, Martin, Burget, Lukas, Cernockỳ, Jan, and Khudanpur, Sanjeev.
Recurrent neural network based language model. In INTERSPEECH, pp. 1045–1048,
2010. URL http://www.fit.vutbr.cz/research/groups/speech/servite/
2010/rnnlm_mikolov.pdf.

8

http://t3-1.yum2.net/index/nlp.stanford.edu/manning/papers/LREC_2.pdf
http://t3-1.yum2.net/index/nlp.stanford.edu/manning/papers/LREC_2.pdf
http://dl.acm.org/citation.cfm?id=2021068
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1207.0580
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.fit.vutbr.cz/research/groups/speech/servite/2010/rnnlm_mikolov.pdf
http://www.fit.vutbr.cz/research/groups/speech/servite/2010/rnnlm_mikolov.pdf

Under review as a workshop contribution at ICLR 2015

Nivre, Joakim and Scholz, Mario. Deterministic dependency parsing of english text. In Proceedings
of the 20th International Conference on Computational Linguistics, COLING ’04, Stroudsburg,
PA, USA, 2004. Association for Computational Linguistics. doi: 10.3115/1220355.1220365.
URL http://dx.doi.org/10.3115/1220355.1220365.

Nivre, Joakim, Hall, Johan, and Nilsson, Jens. Maltparser: A data-driven parser-generator for de-
pendency parsing. In LREC, 2006.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence to sequence learning with neural net-
works. arXiv:1409.3215 [cs], September 2014. URL http://arxiv.org/abs/1409.
3215. arXiv: 1409.3215.

Toutanova, Kristina, Klein, Dan, Manning, Christopher D., and Singer, Yoram. Feature-rich part-
of-speech tagging with a cyclic dependency network. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics on Human Lan-
guage Technology-Volume 1, pp. 173–180. Association for Computational Linguistics, 2003. URL
http://dl.acm.org/citation.cfm?id=1073478.

Yamada, Hiroyasu and Matsumoto, Yuji. Statistical dependency analysis with support vector
machines. In Proceedings of IWPT, volume 3, 2003. URL http://www.jaist.jp/
˜h-yamada/pdf/iwpt2003.pdf.

Zhang, Yue and Clark, Stephen. Transition-based parsing of the chinese treebank using a global dis-
criminative model. In Proceedings of the 11th International Conference on Parsing Technologies
(IWPT’09), pp. 162–171, Paris, France, October 2009. Association for Computational Linguis-
tics. URL http://www.aclweb.org/anthology/W09-3825.

9

http://dx.doi.org/10.3115/1220355.1220365
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://dl.acm.org/citation.cfm?id=1073478
http://www.jaist.jp/~h-yamada/pdf/iwpt2003.pdf
http://www.jaist.jp/~h-yamada/pdf/iwpt2003.pdf
http://www.aclweb.org/anthology/W09-3825

	Introduction
	Previous work: Transition-based dependency parsing
	Previous work: Neural network dependency parsing
	Analysis

	Model: Buffer-aware parsing
	Recurrent neural network language model
	Incorporating RNNLM features
	An extended classifier for dependency parsing
	Training

	Experiments
	Results

	Discussion
	Conclusion

