

Introduction

How do children learn the meanings of words like verbs, which make reference to abstract relations?

Any observation of the use of such words largely underdetermines their meaning [2].

Syntactic bootstrapping solution: the syntactic frame(s) in which a word appears hint at the word's meaning.

Are existing computational frameworks set up to test this idea?

We design a **computational word learning model** which deals in abstract, LoT-like representations. It replicates the phenomenon of syntactic bootstrapping after **unsupervised learning from scratch** on a dataset of utterances paired with their contexts.

Syntactic bootstrapping

Experimental result [1] Positive transitive query: "Point where the girl *wugged* the toy." Negative transitive query: "Point where the girl *didn't wug* the toy."

[1] Melissa Kline et al. (2017). Linking language and events: spatiotemporal cues drive children's expectations about the meanings of novel transitive verbs

[2] Lila R Gleitman (2005). Hard words.

3] Stevens et al. (2016). The pursuit of word meanings [4] Frank et al. (2009). Using speakers' referential intentions to model early cross-situational word learning

Relevant prior art:

Kwiatkowski et al. (2012). A probabilistic model of syntactic and semantic acquisition from child-directed utterances and their meanings Abend et al. (2017). Bootstrapping language acquisition.

"Non-causal" scene (gap in time + space)

[5] Yu and Smith (2007). Rapid word learning under uncertainty via cross-situational statistics [6] Zettlemoyer & Collins (2006). Online learning of relaxed CCG grammars for parsing to logical form.

For technical details, please see our papers: Gauthier et al. (2018). Word learning and the acquisition of syntactic-semantic overhypotheses. Gauthier et al. (2019). A rational model of syntactic bootstrapping.

A rational model of syntactic bootstrapping

Jon Gauthier*, Roger P. Levy, Joshua B. Tenenbaum MIT Computational Psycholinguistics Laboratory & Computational Cognitive Science Group * jon@gauthiers.net // www.foldl.me

Model

Step 1: commit to *representations* which can (1) distinguish complex meanings and (2) support bootstrapping inferences.

Step 2: design a probabilistic model which can power inference over these representations.

The model incorporates a crucial link between a word's syntactic type s_{μ} and its meaning m_{μ} .

CCG Ruleset

Wordform Syntactic type of wMeaning of w

Scene/context Utterance (word sequence) Derivation (syntactic analysis) Logical form (semantic analysis)

Bootstrapping simulation

Utterance *u*: "the girl *gorps* the toy" Novel word w: gorps

Meaning of *gorps* given transitive syntax: $P(m_w \mid s_w = S \setminus N/N)$

Scene | Events CAUSE(girl, BECOME(toy, active) CONTACT(girl, toy); MOVE(girl) **BECOME**(*toy*, *active*); Γ_2 MOVE(girl)

Word meaning m_w $\lambda y.\lambda x. \mathsf{BECOME}(x, y)$ $\lambda y.\lambda x. \mathsf{CONTACT}(x,y)$ $\lambda y.\lambda x. CAUSE(x, MOVE(y))$

Full sentence meanings $P(L \mid m_w)$ Logical form L CONTACT(girl, toy)CAUSE(girl, BECOME(toy, active)) 0.131

Learning from scratch

We presented a learner with utterances in noisy contexts:

	Enti
Entity	Prop
s	Age
r	Age
t	Τογ

Task: acquire a lexicon and accurately predict sentence meanings.

Unsupervised learning:

Utterance-meaning / word-meaning relations are *never* directly observed.

Evaluation: (1) held-out parsing test set; (2) syntactic bootstrapping test

The model learns syntax–semantics biases without direct word-level or sentence-level supervision.

Conclusion

We provide a formal account of syntactic bootstrapping, capturing qualitative experimental results, and unifying research in computational models of word learning and semantic parsing.

Our framework promises to

- 1. Scale to naturalistic corpora
- 2. Make predictions about novel bootstrapping phenomena

brain+cognitive sciences

	Mass
())	0.0091 0.0091 0.0079

The model explains childrens' ability to make zero-shot syntactic bootstrapping inferences.

2AFC choice $P(\Gamma \mid L)$

