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Introduction

. . . Brain decoding evaluations underdetermine
Recent language decoding studies claim to have

Decoding performance with different model targets

discovered "meaning representations” and “semantic :
b [195] P e e e e e e e et e 1. the contents of neural representations,
maps’ in the brain [1,5]. . .
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. . _ 150 3. and the tasks which they are designed to solve.
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Decode/encode with interpretable

representations.
fMRI Neural network models . . o
Why might decoding performance Wehbe et al. [6] learn encoder models predicting
Sentence Sentence be similar across models? brain activity from separate visual, syntactic,
I Case I: Most models share some core semantic, and discourse features. Their analysis
the bird flew the bird flew : :
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Explicitly measure explained
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